If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+27x-162=0
a = 5; b = 27; c = -162;
Δ = b2-4ac
Δ = 272-4·5·(-162)
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-63}{2*5}=\frac{-90}{10} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+63}{2*5}=\frac{36}{10} =3+3/5 $
| 5(2x-1)-2x=4(2x+1) | | 5/14t=-9 | | 3(x+4)=3x-6 | | 4(w+3)=6w+18 | | 12x+3|=-7 | | 3/8x+12=45 | | 6(3-d)+2d=26 | | 6-1-x=6x-9 | | -66=6(y+4) | | 0-x=-4 | | 8+8s=0 | | 0.5n-0.125=0.75+0.83 | | 4x-3=5x+16 | | x2+5x+3=0 | | 3x-11=21x+22 | | 6x+6(x-9)=6 | | 1-1/5x=-4/5(5=x) | | 3x-11=4x+20 | | -8x²+24=16x | | F(6)=22x+13 | | 5u-5=-20 | | (5x-3)+7x=180 | | 1/6d+2/3=1/4(d+2) | | b2-8b+15=0 | | Y-5=3/4x-9 | | 7x+3=10x+15 | | 4(2n2-7)=44 | | 4g+(6+2g)=⋅3 | | 14=-7/2v | | 6(z+6)=3(2z+12)= | | 3x-6=53x6x | | 4(m+3)-2m=3m+1 |